
Project ACRN: A Comprehensive Overview

Last updated: December 13, 2021

Content

❖ Introduction

❖ Architecture

❖ Value Proposition

❖ Key Capabilities

❖ Scenarios

Introduction

ACRN™ is a flexible, lightweight reference hypervisor,

built with real-time and safety-criticality in mind, optimized

to streamline embedded development through an open

source platform.

- A Linux Foundation Project Launched in March 2018

- Version 1.0 released in May 2019
- Version 2.0 released in June 2020
- Version 2.6 released in September 2021

Overallarchitecture

ACRN is a registered trademark of the Linux Foundation. *Other names and brands may be claimed as the property of others.

Value Proposition - ACRN

Security & Hard Real-time
• Heterogeneous Workloads Consolidation

• Supports also the most demanding workloads: security and real-time

Small Footprint
• Optimized for resource-constrained devices

• Small codebase: less than 40,000 vs. >156,000 lines of code for

datacenter-centric hypervisors

Open-source with Flexible License
• Permissive BSD license enables proprietary Guest OS

• Business-friendly to adopt, modify and integrate

• True open source with a vibrant Community

ACRN reduces system deployment complexity, enables heterogeneous architectures, and provide TCO advantages

Key Capabilities

Permissive Open Source

License
Permissive BSD-3-clause license

Linux Foundation Affiliation

Flexible Architecture
Shared, Partitioned and

Hybrid (mix of partitioned & shared)

mode

Various Guest OSes

Support
Linux*, Zephyr*, Android*, VxWorks*,

Windows*…

Secure Container
Kata Containers enabled for starting

isolated

and secure containers

System Manageability
Flexible VM lifecycle Management
Virtualization API supported (libvirt)

Security & Isolation
Full isolation for mixed criticality

workloads

Intel VT backed isolation
Secure boot

Rich I/O Mediation
Graphics, Audio, USB…

Industry standard Virtio BE/FE

drivers

Ease of use
ACRN configuration tool

Rich documentation

Multiple-channel community support

Hard Real-time
Support hard or soft RT VM

Optimized for RT, e.g. no VMExit*,

cache isolation

*Other names and brands may be claimed as the property of others

ACRN™ & OSV/ISV Vendors

Project’s Goal

Provide an embedded
hypervisor reference

solution to enable
OSV/ISVs

A transparent enabler
that provides:

• A common architecture to be

used as-is

• A high quality reference

stack optimized for embedded
development

Productize on top of
ACRN directly by adding
value with:

• Proprietary Service VM or RTOS

• Commercial Licensing

• Commercial Support

Move the industry towards faster TTM

Shared Mode
Previously known as Industry

Device
Model

PLC

Robotics

Service VM

User VMs Post-launched

RTVM

ACRN hypervisor

AI

Machine
Learning

HMI

Visual
Computin

g

Compute

Key Challenges:

❑ Mixed Workloads:

▪ Real-Time vs non Real-Time

▪ Isolation vs Sharing

❑ Real-Time (Hard / Soft)

▪ GBE packet IO control loop < 12us

▪ MSI interrupt latency < 4us

▪ Cyclictest jitter < 10us

❑ HMI

▪ Windows 10

Partitioned Mode

PLC

Robotics

Pre-launched

Safety/Real-Time VM

User VM

ACRN hypervisor

PLC

Robotics

Pre-launched

Real-Time / Standard VM

User VM

Hybrid and Hybrid Real-Time

Device
Model

PLC

Robotics

Service VM

User VMs
Pre-launched

Real-Time TVM

User VM

ACRN hypervisor

AI

Machine
Learning

HMI

Visual
Computin

g

Compute

Key Challenges:

❑ Mixed Workloads:

▪ Real-Time and Standard workloads

▪ Strict Isolation and Sharing

❑ Real-Time (Hard / Soft)

▪ GBE packet IO control loop < 12us

▪ MSI interrupt latency < 4us

▪ Cyclictest jitter < 10us

Open Source with Flexible Licensing

● Scalable support

● Significant R&D and development cost savings

● Transparent open source development model

● Collaborative SW development with industry leaders

● Permissive BSD licensing

Real Time

❑ Support hard or soft Real-

Time VMs (RTVMs)

❑ No VMEXIT during runtime

operations

❑ Highly optimized for RT:
• LAPIC passthrough
• RDT for resources isolation

(cache and memory)
• PCI device passthrough

• Static CPU assignment

❑ Still use EPT and VT-d for

VM isolation

ACRN Hypervisor

CPU0

vLAPIC vIOAPIC vPIC

vMSI vUART …

CPU1

Cache

IOAPIC

LAPIC0 LAPIC1

CPU2 CPU3

Cache

LAPIC2 LAPIC3

Cache

PCI dev PCI dev

Auto PLC IPC Robotics

Hard Real-Time

IPC Robotics

Soft Real-Time

Dev ice Model

System Manageability

VM Type & Severity:

• Load Order: Pre-launched, Service VM, Post-launched
• Category of VM: Service VM, User VM (can be pre-

launched or post-launched)

• Severity: Safety VM > Hard RT VM > Soft RT VM >
Service VM > Standard VM

HW Resource:
• CPU, memory & cache, devices, etc

• Partitioning or sharing based on VM type & severity

System Management:
• HW resources statically assigned at build time or

dynamically assigned during runtime

• ACRN configuration tool: offline tool
• General reference design for VM & system lifecycle

management
• Virtualization API: libvirt

VM

Type &

Severity

HW

Resource

System

Manage

System Security

Secure Boot

• Measured Boot

• Verified Boot

Isolation

• Isolation for mixed
criticality workloads

• Intel Virtualization
technologies: VT-x,
VT-d

• Kata Containers

• EPT memory
Isolation

• Interrupt isolation

• Cache Allocation
Technology (CAT)

Runtime Security

• Virtual TPM

• Trusty

• Supervisor-Mode
Access Prevention
(SMAP)

• Supervisor-Mode
Execution
Prevention (SMEP)

• Software Guard
Extension (SGX)

• Dynamic Application
Loader (DAL)

• Total Memory
Encryption (TME)

Rich I/O Mediation

• I/O device mediators

• Various security virtualization features

• PCI devices pass-through (VT-d) capability too

GPU Ethernet Block Audio IPU I2C GPIO Touch USB

SRIOV (*) Virtio Virtio Virtio Virtio Virtio Virtio Virtio Emu.

RPMB CSE TPM Android Trusty Verify Boot Seed SGX

Virtio Virtio Emu. Emu. Emu. Emu. Emu.

* Mediated Passthrough was supported on Intel Gen9 graphics

Diverse Guest OSes Supported

Ease of Use

Easy Deployment

• Out-of-Box Experience

• VM Configuration Tool

• CPU assignment

• I/O sharing or pass-through

• Pre-defined Configuration

• Rich supported OS types

• Orchestration

• OTA

Rich Documentation

• Getting Started Guide
• Architecture & Design

• Contributing Guides
• Tutorial

• Release notes

Fast Development

• Short Learning Curve
• Straight-forward coding

styles
• Multiple-channel

Community (Mailing list,

WeChat, TCM, etc)

Flexible License

• BSD license for
Hypervisor & Device

models
• Dual Licenses for the

ACRN Linux kernel

drivers

Fin

